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Abstract

This paper reports a theoretical investigation of the boundary layer flow over a vertical flat plate embedded in a porous medium filled
with water near the vicinity of its density maximum associated with the temperature of 3.98 �C at atmospheric pressure. The study aims
at determining similarity solutions of the governing boundary layer equations for a class of problems where the variable wall temperature
(VWT), variable heat flux (VHF), or variable heat transfer coefficient (VHTC), vary as power functions of the distance from the leading
edge of the plate. The existence and uniqueness of the solutions are considered and studied. The analytical and numerical solutions of the
similarity form of the boundary layer equations yield velocity and temperature profiles as well as values of the stream function at the edge
of the boundary layer, the heat transfer coefficient and the temperature on the plate.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluid flow and heat transfer in porous media have been
of considerable interest, especially in the last several dec-
ades. This is primarily because of the numerous applica-
tions of flow through porous media, such as storage
of radioactive nuclear waste materials, transpiration cool-
ing, separation processes in chemical industries, filtration,
transport processes in aquifers, groundwater pollution,
etc. Theories and experiments of thermal convection in
porous media, and the state-of-the-art reviews, with special
emphasize on practical applications have been presented in
the recent books by Nield and Bejan [1], Ingham and Pop
[2], Vafai [3], Pop and Ingham [4], Bejan and Kraus [5],
Ingham et al. [6] and Bejan et al. [7]. However, all the above
mentioned studies are mainly restricted only to fluids at
normal temperatures for which the Boussinesq approxima-
tion is valid and are not applied to fluids at the temperature
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of maximum density. Fluid density usually changes as a
function of temperature in a reasonably linear manner. A
notable exception is liquid water. Pure water at a pressure
of one atmosphere has a maximum density of 999.9720
kg m�3 at 4 �C [8]. Above this temperature the density of
water decreases as the temperature is increased in a manner
similar to other fluids. For temperatures below 4 �C, how-
ever, the trend is reversed: density increases with increased
temperature, giving rise to a maximum density at 4 �C
point. Water and several metals have their maximum den-
sity in the liquid phase, qc, at a temperature Tc = 3.98 �C
above the melting temperature. Goren [9] has shown that
for temperature sufficiently close to Tc, the relationship
between fluid temperature, T , and density, q, is given by
the relation

q� qc

qc

¼ �cðT � T cÞ2 ð1Þ

where qc is the maximum density in the liquid phase and
c = 8.0 · 10�6 (�C)�2 is the fluid thermal expansion coeffi-
cient of water at 4 �C. Moore and Weiss [10] state that (1)
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Nomenclature

A1, A2 constants
g gravitational acceleration, m/s2

h heat transfer coefficient for (VHTC), W/m2eK permeability of the porous medium, m2

l streamwise length, m
L length scale, m
m, n, r constant exponents
q heat flux for (VHF) case, W/m2

T fluid temperature, K
T dimensionless temperature
Tc temperature at 3.98 �C
T1 ambient temperature, K
�u;�v velocity components along �x- and �y-axes, respec-

tively, m/s

Uc characteristic velocity, m/s
�x; �y Cartesian coordinates, m

Greek symbols

a effective thermal diffusivity, m2/s
c coefficient of thermal expansion, (�C)�2

e small constant
h dimensionless temperature
qc maximum fluid density, kg/m3

m kinematic viscosity, m2/s
w dimensionless stream function
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is accurate to within ±4% in the range 0 �C 6 T 6 8 �C.
Gebhart and Mollendorf [11] give a relation, which is more
accurate than (1) over a wider range of temperatures, but we
shall follow here the many authors who have used (1). Thus,
for small temperature variations free convection in water at
Tc would be much reduced from that at other temperatures
and this fact might be an important consideration in view of
several physical problems, such as coolant in many experi-
ments in chemical engineering, atomic energy, etc., where
one wishes to suppress free convection.

The aim of this paper is, therefore, to study the steady
free convection boundary layer flow over a vertical imper-
meable surface embedded in a porous medium saturated
with water at 4 �C when the temperature of the plate, the
surface heat flux, or, the heat transfer coefficient vary as
a power function of the distance x from the leading edge
of the plate. A generalized version of Newton’s law of cool-
ing (the rate of heat transfer at the wall is proportional to
the excess temperature of the local fluid to that of the sur-
rounding fluid, where the constant of proportionality is
assumed to be varying with power of the coordinate along
the plate) is also considered as a boundary condition and it
is referred to as the prescribed heat transfer coefficient case
for Boussinesq fluid by Ramanaiah and Malarvizhi [12],
Ramanaiah and Kumaran [13,14]. Similar boundary condi-
tion is also considered for Boussinesq fluid by Merkin [15],
Lesnic et al. [16] with a slight change in the condition (the
rate of heat transfer at the wall is proportional to the tem-
perature of the local fluid), which they referred it to as
‘Newtonian heating’. Though many of these boundary con-
ditions may be difficult to realize practically, all the above
three classes of boundary conditions are chosen in the pres-
ent study for the reason that these boundary conditions
permit similarity solutions. The non-similar flows, like
the case of Newtonian heating will be studied later. It
should be mentioned that the problem of free convection
in a porous cavity filled with water at 4 �C has been studied
by Poulikakos [17,18], and Blake et al. [19].
2. Basic equations

Consider the steady free convection over a semi-infinite
vertical impermeable flat plate which is embedded in a por-
ous medium filled with water at 4 �C and maintained at a
variable temperature (VWT), variable heat flux (VHF),
or variable heat transfer coefficient (VHTC), and the
ambient temperature being T1 = Tc. It is assumed that
the convective fluid and the porous medium are in local
thermodynamic equilibrium, the viscous dissipation is
neglected, the physical properties of the fluid except the
density are constant and that the Boussinesq and boundary
layer approximations are valid. Under these assumptions,
the governing equations are

o�u
o�x
þ o�v

o�y
¼ 0 ð2Þ

�u ¼
eKgc
m
ðT � T cÞ2 ð3Þ

�u
oT
o�x
þ �v

oT
o�y
¼ a

o2T
o�y2

ð4Þ

subjected to the boundary conditions

�v ¼ 0 at �y ¼ 0 ð5aÞ
�u ¼ 0; T ¼ T c as �y !1 ð5bÞ

ðiÞ ðVWTÞ T � T c

T c

¼ �x
l

� �m

ðiiÞ ðVHFÞ � L
T c

oT
o�y
¼ �x

l

� �ð4m�1Þ=2

ðiiiÞ ðVHTCÞ �L

ðT � T cÞ
oT
o�y
¼ �x

l

� �ð2m�1Þ=2

at �y ¼ 0

ð5cÞ
where �x and �y are the Cartesian coordinates along the plate
and normal to it, �u and �v are velocity components along �x-
and �y- axes, respectively, T is the fluid temperature, g is the
acceleration due to gravity, eK is the permeability of the
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porous medium and a is the effective thermal diffusivity.

Further, L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lam=g eKcT 2

c

q
is a length scale, m is a given

constant, l is a given streamwise length scale and m is the
kinematic viscosity.

We now introduce the following dimensionless vari-
ables:

x ¼ �x=l; y ¼ �y=L; u ¼ �u=U c;

v ¼ ðl�vÞ=ðLU cÞ; T ¼ ðT � T cÞ=T c ð6Þ

where Uc is the characteristic velocity which is defined by:
Uc = (la)/L2. Eqs. (2)–(5) can then be written in non-
dimensional form as, see Pop and Ingham [4],

ou
ox
þ ov

oy
¼ 0 ð7Þ

u ¼ T 2 ð8Þ

u
oT
ox
þ v

oT
oy
¼ o

2T
oy2

ð9Þ

subjected to the boundary conditions

v ¼ 0 at y ¼ 0 ð10aÞ
u ¼ 0; T ¼ 0 as y !1 ð10bÞ
ðiÞ ðVWTÞ T ¼ T w0ðxÞ ¼ xm at y ¼ 0 ð10cÞ

ðiiÞ ðVHFÞ � oT
oy

� �
y¼0

¼ qw1ðxÞ ¼ xð4m�1Þ=2 ð10dÞ

ðiiiÞ ðVHTCÞ � 1

T
oT
oy

� �
y¼0

¼ hw2ðxÞ ¼ xð2m�1Þ=2 ð10eÞ
Table 1(a)
Variation of �h00ð0Þ, f0(g01), g01 and g0d with m for VWT case

m �h00ð0Þ f0(g01) g01 g0d

�0.25 0.000001 1.999991 27.0 10.597
0 0.376526 1.090319 26.0 8.769
0.25 0.565140 0.838747 21.0 7.408
0.50 0.707107 0.707106 20.0 6.513
0.75 0.825530 0.622822 18.0 5.876
1 0.929182 0.562936 15.0 5.393
1.2 1.004503 0.525762 14.0 5.082
1.5 1.107990 0.481655 13.0 4.702
2 1.261829 0.427759 12.0 4.222
5 1.944541 0.284077 8.0 2.870
10 2.725929 0.204402 6.0 2.084
20 3.837976 0.145833 4.0 1.494
50 6.052145 0.092737 3.0 0.953
100 8.551380 0.065695 1.8 0.676
200 12.088118 0.046495 1.1 0.479
500 19.107853 0.029422 0.7 0.303
1000 27.020148 0.020808 0.5 0.215
2000 38.211272 0.014713 0.3 0.152
5000 60.415173 0.009307 0.2 0.096
3. Similarity solutions

(i) Case of VWT

In this case we assume the dimensionless wall tempera-
ture as

T w0ðxÞ ¼ xm ð11Þ

and introduce the following similarity variables:

w0 ¼ xð1þ2mÞ=2f0ðg0Þ; T ¼ xmh0ðg0Þ; g0 ¼ xð2m�1Þ=2y ð12Þ
except m = �1/2 which has been treated separately in
Appendix A. In (12) w0 is the dimensionless stream func-
tion, which is defined in the usual way as u = ow0/oy and
v = �ow0/ox. Substituting variables (11) and (12) into
Eqs. (8)–(10c), we get

f 00 ¼ h2
0 ð13Þ

h000 þ
1þ 2m

2
f0h

0
0 � mf 00h0 ¼ 0 ð14Þ

subject to the boundary conditions

f0ð0Þ ¼ 0; h0ð0Þ ¼ 1; h0ð1Þ ¼ 0 ð15Þ
Eq. 15(a) need not be ensured when m = �1/2, which has
been treated separately in Appendix A. The quantity of
interest is the heat transfer from the plate, which can be
written in non-dimensional form as
qw0ðxÞ ¼ xð4m�1Þ=2½�h00ð0Þ� ð16Þ
We notice that integrating Eq. (14) with the boundary con-
ditions (15), we get the relation

h00ð0Þ ¼ �
ð1þ 4mÞ

2

Z 1

0

f 00h0 dg0 ð17Þ

which shows that the plate is adiabatic for m = �1/4.

3.1. Numerical solutions for VWT case

Solving Eqs. (13)–(15) numerically for a range of values
�0.25 6 m 6 5000, we obtain values of �h00ð0Þ, f0(g01) and
g0d, respectively. The shooting method has been used to
solve these equations. Some of these values are given in
Table 1(a) where g01 is the value of g0 at the free stream,
given by h0(g01) = 10�10. It is seen that at x = 1, the
dimensionless wall heat flux �h00ð0Þ increases with m,
while the stream function value at the free stream f0(g01)
and the thermal boundary layer thickness g0d defined as
h0(g0d) = 0.01 decreases with increasing m. It is also
observed from the values of g01 that h0 approaches zero
very fast when m approaches larger values. From Eq.
(13), it is clear that f 0 will be always non-negative even in
the down stream. Therefore it may be concluded that there
are no multiple solutions in this range of m values. Note
that in the Boussinesq fluid case, Ingham and Brown [20]
reported multiple solutions due to the flow reversal in the
down stream.

(ii) Case of VHF

Now, we assume the dimensionless wall heat flux as

qw1ðxÞ ¼ xn ð18Þ
where n = (4m � 1)/2 and introduce the following similar-
ity variables:

w1 ¼ xð1þ2mÞ=2f1ðg1Þ; T ¼ xmh1ðg1Þ; g1 ¼ xð2m�1Þ=2y ð19Þ



Table 1(b)
Variation of h1(0), f1(g11), g11 and A1 with n for VHF case

n h1(0) f1(g11) g11 A1

�1 1 1 1 0
�0.5 1.629680 1.776871 15.9541 0.613617
0 1.330215 1.115714 15.7869 0.751758
0.5 1.189207 0.840896 16.8179 0.840897
1 1.100610 0.685484 16.3546 0.908587
1.5 1.037408 0.583994 14.4591 0.963941
1.9 0.997756 0.524582 14.0315 1.002249
2.5 0.950019 0.457581 13.6839 1.052611
3.5 0.890225 0.380802 13.4797 1.123311
9.5 0.717119 0.203717 11.1557 1.394468
19.5 0.605679 0.123802 9.9062 1.651039
39.5 0.510445 0.074440 7.8363 1.959075
99.5 0.406486 0.037696 7.3803 2.460111
199.5 0.341965 0.022465 5.2637 2.924274
399.5 0.287621 0.013373 3.8245 3.476797
999.5 0.228767 0.006731 3.0599 4.371253
1999.5 0.192378 0.004003 2.5990 5.198091
3999.5 0.161772 0.002380 1.8545 6.181527
9999.5 0.128655 0.001197 1.5545 7.772720
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where w1 is the dimensionless stream function, which is de-
fined in the usual way u = ow1/oy and v = �ow1/ox. Substi-
tuting variables (18) and (19) into Eqs. (8)–(10b) and (10d),
we get

f 01 ¼ h2
1 ð20Þ

h001 þ
1þ 2m

2
f1h

0
1 � mf 01h1 ¼ 0 ð21Þ

subject to the boundary conditions

f1ð0Þ ¼ 0; h01ð0Þ ¼ �1; h1ð1Þ ¼ 0 ð22Þ

The quantity of interest is now the wall temperature,
which is given in non-dimensional form by

T w1ðxÞ ¼ xð2nþ1Þ=4h1ð0Þ ð23Þ

We have also the relation

ð1þ 4mÞ
Z 1

0

f 01h1 dg1 ¼ 2 ð24Þ

The above relation shows that the solution of Eqs. (20)–
(22) is possible only for m > �1/4, i.e., n > �1. Using the
transformation

g1 ¼ g0A1; f 1ðg1Þ ¼ f0ðg0Þ=A1;

h1ðg1Þ ¼ h0ðg0Þ=A1 ð25Þ

where A1 is a positive constant which depends on the value
of n alone, the boundary condition h01ð0Þ ¼ �1 gives

A1 ¼ ð�h00ð0ÞÞ
1=2 ð26Þ

Therefore, the dimensionless wall temperature at x = 1,
takes the form

h1ð0Þ ¼ ð�h00ð0ÞÞ
�1=2 ð27Þ
3.2. Numerical solutions for VHF case

Using the transformations (25) and (26), Eqs. (20)–(22)
governing the case of wall heat flux varying as xn, are
solved numerically for some values of n in the range
�1 < n 6 9999.5. Values of h1(0), f1(g11), g11 and A1 are
given in Table 1(b). It is observed that at x = 1, the values
of the dimensionless wall temperature h1(0) and the stream
function at the free stream f1(g11) decreases with increas-
ing n.

(iii) Case of VHTC

Now, we assume the dimensionless heat transfer coeffi-
cient as

hw2ðxÞ ¼ xr ð28Þ
where r = (2m � 1)/2 and introduce the following similar-
ity variables:

w2 ¼ xð1þ2mÞ=2f2ðg2Þ; T ¼ xmh2ðg2Þ; g2 ¼ xð2m�1Þ=2y ð29Þ

where w2 is the dimensionless stream function, which is
defined in the usual way u = ow2/oy and v = �ow2/ox.
Substituting variables (28) and (29) into Eqs. (8)–(10b),
and the boundary condition (10e), we get

f 02 ¼ h2
2 ð30Þ

h002 þ
1þ 2m

2
f2h

0
2 � mf 02h2 ¼ 0 ð31Þ

subject to the boundary conditions

f2ð0Þ ¼ 0; h02ð0Þ þ h2ð0Þ ¼ 0; h2ð1Þ ¼ 0 ð32Þ
The quantity of interest is again the wall temperature,

which is given in non-dimensional form by

T w2ðxÞ ¼ xð2rþ1Þ=2h2ð0Þ ð33Þ
Using the transformation

g2 ¼ g0A2; f 2ðg2Þ ¼ f0ðg0Þ=A2;

h2ðg2Þ ¼ h0ðg0Þ=A2 ð34Þ

where A2 is a positive constant which depends on the power
r alone, relation h02ð0Þ þ h2ð0Þ ¼ 0 gives

A2 ¼ �h00ð0Þ ð35Þ
Therefore the dimensionless wall temperature at x = 1, is
given by

h2ð0Þ ¼ ð�h00ð0ÞÞ
�1 ð36Þ
3.3. Numerical solutions for VHTC case

Using the transformations (34) and (35), Eqs. (30)–(32)
governing the case of wall heat transfer coefficient varying
as xr are solved numerically for a range values of r in the
range �0.75 < r 6 4999.5. Values of h2(0), f2(g21), g21
and A2 are given in Table 1(c). It is seen that at x = 1,
the dimensionless wall temperature h2(0) and the stream
function at the free stream f2(g21), decreases with increas-
ing r.



Table 1(c)
Variation of h2(0), f2(g21), g21 and A2 with r for VHTC case

r h2(0) f2(g21) g21 A2

�0.75 1 1 1 0
�0.5 2.655856 2.895730 9.7897 0.376526
�0.25 1.769472 1.484140 11.8679 0.565140
0 1.414213 0.999999 14.1421 0.707107
0.25 1.211343 0.754451 14.8595 0.825530
0.5 1.076216 0.605840 13.9377 0.929182
0.7 0.995517 0.523405 14.0630 1.004503
1 0.902536 0.434711 14.4039 1.107990
1.5 0.792501 0.338999 15.1419 1.261829
4.5 0.514260 0.146089 15.5563 1.944541
9.5 0.366847 0.074985 16.3556 2.725929
19.5 0.260554 0.037997 15.3519 3.837976
49.5 0.165231 0.015323 18.1564 6.052145
99.5 0.116940 0.007682 15.3925 8.551380
199.5 0.082726 0.003846 13.2969 12.088118
499.5 0.052335 0.001540 13.3755 19.107853
999.5 0.037009 0.000770 13.5101 27.020148
1999.5 0.026170 0.000385 11.4634 38.211272
4999.5 0.016552 0.000154 12.0830 60.415173
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3.4. Some analytical solutions

It is worth mentioning that for the case of VWT there
are exact analytical solutions of Eqs. (13)–(15) for some
values of m and they are given by

f0ðg0Þ ¼
1ffiffiffi
2
p 1� e�g0

ffiffi
2
p� �

; h0ðg0Þ ¼ e�g0=
ffiffi
2
p

ð37Þ

when m = 1/2 and

f0ðg0Þ ¼ 2 tanh
g0

2

� �
; h0ðg0Þ ¼ sech

g0

2

� �
ð38Þ

when m = �1/4.
Corresponding to the solution of m = 1/2 (VWT case),

using the transformations (25) and (26), we get one exact
analytical solution of Eqs. (20)–(22) for the case of VHF,
given by

f1ðg1Þ ¼
1

21=4
ð1� e�g123=4Þ; h1ðg1Þ ¼ 21=4e�g1=21=4 ð39Þ

when n = 1/2. Also, using (34) and (35), we get one exact
analytical solution of Eqs. (30)–(32) for the case VHTC,
given by

f2ðg2Þ ¼ 1� e�2g2 ; h2ðg2Þ ¼
ffiffiffi
2
p

e�g2 ð40Þ
when r = 0.

3.5. Non-existence of solutions for m 6 � 1
3
, n 6 �1 and

r 6 � 3
4

From (13) and (15a) it results in that f 00 P 0 and f0 P 0
for all m 5 �1/2. Multiplying Eq. (14) by f0 and integrat-
ing using the boundary conditions (15), we getZ f0ð1Þ

0

f0h0 df0 ¼
1

3ð3mþ 1Þ ð41Þ
Thus the above integral becomes negative for m < �1/3 and
infinity for m = �1/3, respectively. Hence we conclude that
there is no solution for VWT case when m 6 �1/3. We notice
from Table 1(a), h00ð0Þ is negative only for m > �0.25. Using
this fact it is clear from (26) and (35), that A1 and A2 are
positive only for n > �1 and r > �3/4, respectively. Hence,
it may be concluded that there is no solution for the range
n 6 �1 for VHF case and also there is no solution for the
range r 6 �3/4 for VHTC case. Note that the same conclu-
sion for VHF case has been obtained already in Eq. (24).

3.6. Asymptotic solutions for m close to �1/3

Let us take

m ¼ � 1

3
þ e ð42Þ

where e > 0 is a small positive constant. Using the
transformations

f0ðg0Þ ¼ e�sF ðnÞ; h0ðg0Þ ¼ e�sHðnÞ; g0 ¼ esn ð43Þ
in (41) gives s = 1/3 and

R1
0

F ðnÞHðnÞH 0ðnÞdn ¼ 1=9. Eqs.
(13)–(15) then become

F 0 ¼ H 2 ð44Þ

H 00 þ 1

6
þ e

� �
FH 0 þ 1

3
� e

� �
F 0H ¼ 0 ð45Þ

subject to the boundary conditions

F ð0Þ ¼ 0; Hð0Þ ¼ e1=3; Hð1Þ ¼ 0 ð46Þ
Assuming

f0ðg0; eÞ ¼ e�1=3F ðn; eÞ ¼ e�1=3F 0ðnÞ þ F 1ðnÞ þ � � � ð47Þ
h0ðg0; eÞ ¼ e�1=3Hðn; eÞ ¼ e�1=3H 0ðnÞ þ H 1ðnÞ þ � � � ð48Þ

in Eqs. (44)–(46), we get

F 00 ¼ H 2
0 ð49Þ

H 000 þ
1

6
F 0H 00 þ

1

3
F 00H 0 ¼ 0 ð50Þ

subject to the boundary conditions

F 0ð0Þ ¼ 0; H 0ð0Þ ¼ 0; H 0ð1Þ ¼ 0 ð51Þ
and so on.

An investigation of Eq. (50), shows that if it is multiplied
by F0, then one integration can be performed and, on using
(49) and (51), we get

F 0H 00 �
1

3
H 3

0 þ
1

6
F 2

0H 0 ¼ 0 ð52Þ

Let P 0ðF 0Þ ¼ F 00, and integrating (52), we obtain

P 0 ¼ F 00 ¼
1

4
ðA4=3F 2=3

0 � F 2
0Þ ð53Þ

where F0! A as n!1. Hence, we have

H 00ð0Þ ¼
A2

24
ð54Þ
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The unknown constant A may be determined from the con-
dition (41). Using Eqs. (52)–(54), the condition (41) may be
rewritten asZ A

0

F 4=3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A4=3 � F 4=3

0

q
dF 0 ¼

2

9
ð55Þ

The substitution F0 = A sin3/2h, converts the integral in (55)
as follows:

8

27A3
¼ 2

Z p=2

0

ðsin5=2 hÞðcos2 hÞdh ¼ b
7

4
;
3

2

� �
ð56Þ

where the last term is the beta integral. Using the Gamma
integral tables, we obtain

F 0ð1Þ ¼ A ¼ 0:975176615 . . . ð57Þ
Therefore

H 00ð0Þ ¼
A2

24
¼ 0:039623726 . . . ð58Þ

Solving equations corresponding to F1 and H1, it was
found that it has no effect on neither h00ð0Þ nor f0(1).
Therefore, we have

h00ð0Þ �
A2

24
e�2=3; f 0ð1Þ � Ae�1=3 ð59Þ

when m ¼ � 1
3
þ e and e > 0 for VWT case.

The results given by (59) are compared with exact
numerical solution of Eqs. (13)–(15), in Table 2. Good
agreement between the values are seen when m! � 1

3
.

3.7. Series solutions for m ¼ � 1
4
þ e, n = �1 + 2e and

r ¼ � 3
4
þ e

Since for m = �1/4 the plate is adiabatic, i.e., h00ð0Þ ¼ 0,
it is worth to get a series solution valid near m = �1/4. Let
m ¼ � 1

4
þ e, where e is a small constant and assume the

series

f0 ¼ F 0 þ eF 1 þ e2F 2 þ � � � ;
h0 ¼ H 0 þ eH 1 þ e2H 2 þ � � � ð60Þ
Table 2
Variation of h00ð0Þ and f0(1) with m ¼ � 1

3
þ e and asymptotic approach to

e! 0 (i.e., m! � 1
3
) for VWT case

e h00ð0Þ A2

24 e�2=3 f0(1) Ae�1/3

0.00001 85.422176 85.366750 45.277758 45.263694
0.00002 53.793865 53.777682 35.930279 35.925818
0.00005 29.196298 29.195017 26.469383 26.470368
0.0001 18.389201 18.391708 21.005898 21.009545
0.0002 11.580994 11.586050 16.668680 16.675287
0.0005 6.280811 6.289875 12.273911 12.286456
0.001 3.948666 3.962373 9.731884 9.751767
0.002 2.475320 2.496139 7.708753 7.739982
0.005 1.318549 1.355113 5.647109 5.702868
0.01 0.797350 0.853667 4.441794 4.526369
0.03 0.298716 0.410400 2.985880 3.138409
0.05 0.139175 0.291950 2.455134 2.647037
in Eqs. (13)–(15). We then get

F 00 ¼ H 2
0 ð61Þ

H 000 þ
1

4
ðF 0H 00 þ F 00H 0Þ ¼ 0 ð62Þ

F 01 ¼ 2H 0H 1 ð63Þ

H 001 þ
1

4
ðF 1H 00 þ F 0H 01 þ F 00H 1 þ F 01H 0Þ

þ F 0H 00 � F 00H 0 ¼ 0 ð64Þ
F 02 ¼ 2H 0H 2 þ H 2

1 ð65Þ

H 002 þ
1

4
ðF 2H 00 þ F 1H 01 þ F 0H 02 þ F 02H 0 þ F 01H 1 þ F 00H 2Þ

þ F 1H 00 þ F 0H 01 � F 01H 0 � F 00H 1 ¼ 0 ð66Þ

subject to the boundary conditions

F 0ð0Þ ¼ 0; H 0ð0Þ ¼ 1; H 0ð1Þ ¼ 0; F 1ð0Þ ¼ 0;

H 1ð0Þ ¼ 0; H 1ð1Þ ¼ 0;

F 2ð0Þ ¼ 0; H 2ð0Þ ¼ 0; H 2ð1Þ ¼ 0

ð67Þ

Note that Eqs. (61), (62) and (67a,b,c) are solved analyti-
cally for F0 and H0, and the solution is given in Eq. (38).
Integrating Eq. (64) once from 0 to 1 and using the
boundary conditions (67), we get H 01ð0Þ ¼ �p.

On the other hand, solving the set of coupled Eqs. (61)–
(67), numerically, we get

h00ð0Þ ¼ �3:14159265eþ 20:67085113e2 þ � � � ð68aÞ
f0ð1Þ ¼ 2� 9:8696044eþ 77:8930842e2 þ � � � ð68bÞ

when m ¼ � 1
4
þ e for VWT case.

Further, using (68) in the transformations (25) and (26),
we get

A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peð1� 6:5797363eÞ

p
; h1ð0Þ � 1=A1 ð69aÞ

f1ð1Þ � ð2� 9:8696044eþ 77:8930842e2Þ=A1 ð69bÞ

when n = �1 + 2e, e > 0 for VHF case. On using (68) in the
transformations (34) and (35), we get

A2 � peð1� 6:5797363eÞ; h2ð0Þ � 1=A2 ð70aÞ
f2ð1Þ � ð2� 9:8696044eþ 77:8930842e2Þ=A2 ð70bÞ

when r ¼ � 3
4
þ e, e > 0 for VHTC case.

The results given in Eqs. (68)–(70) are compared with
the exact numerical solutions of Eqs. (13)–(15), (20)–(22)
and (30)–(32) in Tables 3(a), 3(b) and 3(c), respectively. It
is observed the results agree well when m!�0.25 +,
n!�1+ and r!�0.75+ for VWT, VHF and VHTC
cases, respectively. The convergence of the series solutions
is slightly faster for m > �0.25 when compared to
m < �0.25 for VWT case.

3.8. Series solutions for m = 0 + e, n ¼ � 1
2
þ 2e and

r ¼ � 1
2
þ e

For small m, let m = e, where e is a small constant and
assuming the series



Table 3(a)
Comparison of series solutions near m = �0.25 (Eqs. (68)) with exact
numerical solutions for VWT case

e m ¼ � 1
4þ e h00ð0Þ Eq. (68a) f0(1) Eq. (68b)

�0.05 �0.3 0.263374 0.208757 2.869732 2.688213
�0.01 �0.26 0.033706 0.033483 2.107275 2.106485
�0.005 �0.255 0.016251 0.016225 2.051389 2.051295
�0.001 �0.251 0.003162 0.003162 2.009948 2.009947
�0.0005 �0.2505 0.001576 0.001576 2.004954 2.004954
�0.0001 �0.2501 0.000314 0.000314 2.000988 2.000988
0 �0.25 0 0 2 2
0.0001 �0.2499 �0.000314 �0.000314 1.999014 1.999014
0.0005 �0.2495 �0.001566 �0.001566 1.995085 1.995085
0.001 �0.249 �0.003121 �0.003121 1.990208 1.990208
0.005 �0.245 �0.015215 �0.015191 1.952515 1.952599
0.01 �0.24 �0.029529 �0.029349 1.908445 1.909093
0.05 �0.2 �0.121795 �0.105403 1.641314 1.701252

Table 3(b)
Comparison of series solutions for n = �1 + 2e (Eqs. (69)) with exact
numerical solutions for VHF case (e > 0)

e h1(0) Eq. (69a) f1(1) Eq. (69b)

0.0001 56.4375 56.4375 112.81936 112.81940
0.0005 25.2727 25.2729 50.42124 50.42164
0.001 17.8997 17.9002 35.62404 35.62518
0.005 8.1071 8.1134 15.82926 15.84226
0.01 5.8194 5.8372 11.10592 11.14376
0.05 2.8654 3.0802 4.70302 5.24015

Table 3(c)
Comparison of series solutions for r ¼ � 3

4
þ e (Eqs. (70)) with exact

numerical solutions for VHTC case (e > 0)

e h2(0) Eq. (70a) f2(1) Eq. (70b)

0.0001 3185.192 3185.195 6367.244 6367.248
0.0005 638.711 638.721 1274.282 1274.303
0.001 320.398 320.418 637.658 637.699
0.005 65.725 65.828 128.330 128.535
0.01 33.865 34.073 64.629 65.048
0.05 8.211 9.487 13.476 16.141

Table 4(a)
Comparison of series solutions for m = 0 + e (Eqs. (80)) with exact
numerical solutions for VWT case

e h00ð0Þ Eq. (80a) f0(1) Eq. (80b)

�0.2 �0.121795 �0.152696 1.641313 1.518888
�0.1 �0.271883 �0.274433 1.282891 1.272930
�0.05 �0.327660 �0.327935 1.174771 1.173707
�0.005 �0.371888 �0.371888 1.097947 1.097946
�0.001 �0.375603 �0.375602 1.091832 1.091833
�0.0001 �0.376434 �0.376434 1.090471 1.090471
0 �0.376526 �0.376526 1.090320 1.090320
0.0001 �0.376618 �0.376618 1.090169 1.090169
0.001 �0.377448 �0.377448 1.088814 1.088814
0.005 �0.381116 �0.381115 1.082851 1.082852
0.05 �0.420424 �0.420207 1.021941 1.022770
0.1 �0.460551 �0.458977 0.965081 0.971057
0.2 �0.532428 �0.521785 0.875169 0.915142
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f0 ¼ F 0 þ eF 1 þ e2F 2 þ � � � ð71Þ
h0 ¼ H 0 þ eH 1 þ e2H 2 þ � � � ð72Þ

in Eqs. (13)–(15), we get

F 00 ¼ H 2
0 ð73Þ

H 000 þ
1

2
F 0H 00 ¼ 0 ð74Þ

F 01 ¼ 2H 0H 1 ð75Þ

H 001 þ
1

2
ðF 1H 00 þ F 0H 01Þ þ F 0H 00 � F 00H 0 ¼ 0 ð76Þ

F 02 ¼ 2H 0H 2 þ H 2
1 ð77Þ

H 002 þ
1

2
ðF 2H 00 þ F 1H 01 þ F 0H 02Þ þ F 1H 00 þ F 0H 01 � F 01H 0

� F 00H 1 ¼ 0 ð78Þ
subject to the boundary conditions

F 0ð0Þ ¼ 0; H 0ð0Þ ¼ 1; H 0ð1Þ ¼ 0

F 1ð0Þ ¼ 0; H 1ð0Þ ¼ 0; H 1ð1Þ ¼ 0

F 2ð0Þ ¼ 0; H 2ð0Þ ¼ 0; H 2ð1Þ ¼ 0

ð79Þ

Solving the above set of coupled Eqs. (73)–(79), numer-
ically we get,

h00ð0Þ ¼ �0:376526� 0:922721eþ 0:982136e2 þ � � � ð80aÞ
f0ð1Þ ¼ 1:090320� 1:509365eþ 3:167386e2 þ � � � ð80bÞ

for VWT case when m = e.
Further, using (80) in the transformations (25) and (26),

we get

A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:376526þ 0:922721e� 0:982136e2

p
h1ð0Þ � 1=A1 ð81aÞ
f1ð1Þ � ð1:090320� 1:509365eþ 3:167386e2Þ=A1 ð81bÞ

for VHF case when n = �0.5 + 2e. Thus, using (80) in the
transformations (34) and (35), we get

A2 � 0:376526þ 0:922721e� 0:982136e2

h2ð0Þ � 1=A2 ð82aÞ
f2ð1Þ � ð1:090320� 1:509365eþ 3:167386e2Þ=A2 ð82bÞ

for VHTC case when r = �0.5 + e.
The results given in Eqs. (80)–(82) are compared with

the exact numerical solutions of Eqs. (13)–(15), (20)–(22)
and (30)–(32) in Tables 4(a), 4(b) and 4(c), respectively. It
is observed the results agree well when m! 0, n!�0.5
and r!�0.5 for VWT, VHF and VHTC cases, respec-
tively. The convergence of the series solutions is faster for
m > 0 when compared to m < 0 for VWT case.

3.9. Asymptotic solutions for large m, n and r

For large values of m, using the transformation,

f0ðg0Þ ¼ m�1=2F 0ðn0Þ; h0ðg0Þ ¼ H 0ðn0Þ;
g0 ¼ m�1=2n0 ð83Þ



Table 4(b)
Comparison of series solutions for n = �0.5 + 2e (Eqs. (81)) with exact
numerical solutions for VHF case

e h1(0) Eq. (81a) f1(1) Eq. (81b)

�0.2 2.865398 2.559091 4.703018 3.886973
�0.1 1.917825 1.908896 2.460362 2.429891
�0.05 1.746981 1.746250 2.052304 2.049585
�0.005 1.639812 1.639812 1.800427 1.800425
�0.001 1.631683 1.631683 1.781525 1.781525
�0.0001 1.629880 1.629880 1.777337 1.777337
0 1.629680 1.629681 1.776873 1.776873
0.0001 1.629481 1.629481 1.776409 1.776410
0.001 1.627689 1.627690 1.772250 1.772251
0.005 1.619838 1.619839 1.754044 1.754047
0.05 1.542256 1.542654 1.576095 1.577780
0.1 1.473538 1.476062 1.422084 1.433341
0.2 1.370470 1.384377 1.199393 1.266902

Table 4(c)
Comparison of series solutions for r = �0.5 + e (Eqs. (82)) with exact
numerical solutions for VHTC case

e h2(0) Eq. (82a) f2(1) Eq. (82b)

�0.2 8.210503 6.548945 13.476017 9.947116
�0.1 3.678054 3.643883 4.718544 4.638409
�0.05 3.051943 3.049388 3.585336 3.579088
�0.005 2.688983 2.688983 2.952361 2.952358
�0.001 2.662389 2.662391 2.906883 2.906885
�0.0001 2.656509 2.656510 2.896846 2.896847
0 2.655858 2.655859 2.895735 2.895736
0.0001 2.655207 2.655208 2.894625 2.894626
0.001 2.649372 2.649373 2.884673 2.884674
0.005 2.623877 2.623880 2.841269 2.841274
0.05 2.378552 2.379781 2.430741 2.433969
0.1 2.171315 2.178760 2.095495 2.115701
0.2 1.878187 1.916499 1.643732 1.753870

Table 5(a)
Variation of �h00ð0Þ and f0(1) with m and asymptotic approach to m!1
for VWT case

m �h00ð0Þ 0.854371m1/2 f0(1) 0.658158m�1/2

5 1.944541 1.9104 0.284077 0.2943
10 2.725929 2.7018 0.204402 0.2081
50 6.052145 6.0413 0.092737 0.0931
100 8.551380 8.5437 0.065695 0.0658
500 19.107853 19.1043 0.029422 0.029434
1000 27.020148 27.0176 0.020808 0.020813
5000 60.415173 60.4132 0.009307 0.009308

Table 5(b)
Variation of h1(0) and f1(1) with n and asymptotic approach to n!1
for VHF case

n h1(0) 1.286572n�1/4 f1(1) 1.197511n�3/4

9.5 0.717120 0.732830 0.203718 0.221302
19.5 0.605679 0.612245 0.123803 0.129048
99.5 0.406486 0.407360 0.037696 0.038012
199.5 0.341965 0.342333 0.022465 0.022560
999.5 0.228768 0.228817 0.006731 0.006736
1999.5 0.192379 0.192399 0.004003 0.004004
9999.5 0.128656 0.128659 0.001197 0.001198

Table 5(c)
Variation of h2(0) and f2(1) with r and asymptotic approach to r!1 for
VHTC case

r h2(0) 1.170452r�1/2 f2(1) 0.770342r�1

4.5 0.514260 0.551756 0.146090 0.171187
9.5 0.366848 0.379745 0.074985 0.081089
49.5 0.165231 0.166361 0.015323 0.015562
99.5 0.116940 0.117339 0.007682 0.007742
499.5 0.052335 0.052370 0.001540 0.001542
999.5 0.037010 0.037022 0.000770 0.000771
4999.5 0.016552 0.016554 0.000154 0.000154
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in the following approximated (for large m) form of Eqs.
(13)–(15):

f 00 ¼ h2
0 ð84Þ

h000 þ mf 0h
0
0 � mf 00h0 ¼ 0 ð85Þ

subject to the boundary conditions

f0ð0Þ ¼ 0; h0ð0Þ ¼ 1; h0ð1Þ ¼ 0 ð86Þ
we get

F 00 ¼ H 2
0 ð87Þ

H 000 þ F 0H 00 � F 00H 0 ¼ 0 ð88Þ

subject to the boundary conditions

F 0ð0Þ ¼ 0; H 0ð0Þ ¼ 1; H 0ð1Þ ¼ 0 ð89Þ
Solving Eqs. (87)–(89), numerically we get

H 00ð0Þ ¼ �0:854371; F 0ð1Þ ¼ 0:658158 ð90Þ
Therefore,

h00ð0Þ � �0:854371m1=2; f 0ð1Þ � 0:658158m�1=2 ð91Þ
for VWT case when m� 1.
Using (91) in the transformations (25) and (26), we get

A1 � 0:9243219
n
2
þ 1

4

� �1=4

� 0:777259n1=4 ð92aÞ

f1ð1Þ � 1:197511n�3=4; h1ð0Þ � 1:286572n�1=4 ð92bÞ

for VHF case when n� 1. With the help of (91) and the
transformation (34) and (35), we get

A2 � 0:854371 r þ 1

2

� �1=2

� 0:854371r1=2 ð93aÞ

f2ð1Þ � 0:770342r�1; h2ð0Þ � 1:170452r�1=2 ð93bÞ

for VHTC case when r� 1.
On the other hand, the results given in Eqs. (91)–(93) are

compared with exact numerical solutions of Eqs. (13)–(15),
(20)–(22) and (30)–(32) in Tables 5(a), 5(b) and 5(c) respec-
tively. Excellent agreement between the values are seen
when m!1, n!1 and r!1 for VWT, VHF and
VHTC cases, respectively.
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4. Results and discussion

Profiles of the dimensionless temperature h0 at x = 1 for
VWT case for values of the range of values of m in the
ranges �1/3 < m < �0.25 and �0.25 6 m 6 100 are shown
in Figs. 1(a) and 1(b), respectively. For �1/3 < m < �0.25,
the temperature close to the plate is greater when compared
to that of the plate. The maximum temperature is attained
very near to the plate (within the boundary layer) and the
maximum move towards the plate when m!�1/3. Also
the temperature profiles have a very long and thin tail when
m!�1/3. On the other hand, for �0.25 6 m 6 100, the
maximum temperature is at the plate itself.

Profiles of the dimensionless stream function f0 at
x = 1 for VWT case and for values of m in the ranges
�1/3 < m < �0.25 and �0.25 6 m 6 100 are shown in
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Figs. 2(a) and 2(b), respectively. For the range �1/3 <
m < �0.25, the profiles of f0 are concave near the plate,
hence grows vertically steep and attains a larger constant
value, whereas for the range �0.25 6 m 6 100, the profiles
of f0 are convex near the plate, hence grows gradually and
attains a smaller constant value.

From Eq. (8), it is interesting to observe that since
u = T2, the momentum boundary layer thickness will be
always less or equal when compared to the thermal bound-
ary layer thickness. This is also seen from Fig. 3, where the
plots of f0 and of the dimensionless velocity profile f 00 as
well as of h0 at x = 1, see Eq. (38) are shown for the adia-
batic VWT case (m = �0.25).
Table 6
Comparison of results for Boussinesq fluid and Water at 4 �C for VWT case

Boussinesq fluid [20]

Tw(x) = xk

qw(x) = �x(3k�1)/2h0(0), w(x,1) = x(k+1)/2f(1)

Analytical solutions for k ¼ � 1
3 and k = 1

Adiabatic solution for k ¼ � 1
3

Multiple solutions for k > 1

No solutions for k 6 � 1
2

Asymptotic solutions for k ¼ � 1
2þ e

h 0(0) � 0.078103e�3/4, f(1) � 1.77828e�1/4

–

Series solutions for k! 0
h 0(0) = �.44375 � .85665k + .66943k2 + � � �

Asymptotic solutions for k!1
h 0(0) � �0.90638k1/2, f(1) � 1.28077k�1/2

Momentum boundary layer thickness is equal
to thermal boundary layer thickness
Fig. 4 shows the variation of dimensionless wall heat
flux qw0(x) with x for VWT case, Eq. (16). It is seen that
qw0 is negative for �1/3 < m < �0.25, positive for
m > �0.25 and zero for m = �0.25 (adiabatic wall case).
When m = 0.25 and m = �0.25, qw0 is constant for all x,
qw0 increases with increasing x for �1/3 < m < �0.25 and
m > 0.25 whereas qw0 decreases with increasing x for
�0.25 < m < 0.25. The results of Boussinesq fluid [20] and
the non-Boussinesq fluid (present VWT case) are summa-
rized in Table 6. It revealed a similar behaviour with m

in both, except for a shift in the values of m.
In Figs. 5 and 6 an interesting comparison has been

made between Boussinesq fluid [20] and non-Boussinesq
Non-Boussinesq fluid (present study for VWT case)

Tw0(x) = xm

qw0ðxÞ ¼ �xð4m�1Þ=2h00ð0Þ, w0(x,1) = x(2m+1)/2f0(1)

Analytical solutions for m ¼ � 1
4 and m ¼ 1

2

Adiabatic solution for m ¼ � 1
4

No multiple solutions

No solutions for m 6 � 1
3

Asymptotic solutions for m ¼ � 1
3þ e; e > 0

h00ð0Þ � 0:039624e�2=3, f0(1) � 0.975177e�1/3

Series solutions for m = �0.25 + e
h00ð0Þ ¼ �3:14159265eþ 20:67085113e2 þ � � �

Series solutions for m! 0
h00ð0Þ ¼ �.376526� .922721mþ .982136m2 þ � � �

Asymptotic solutions for m!1
h00ð0Þ � �0:854371m1=2, f0(1) � 0.658158m�1/2

Momentum boundary layer thickness is less than the
thermal boundary layer thickness



0 0.5 1 1.5 2 2.5 3
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x

v 
(x

,∞
)

λ = 0 (Boussinesq fluid, CWT case)
m = 0 (Present CWT case)
n = 0 (Present CHF case)
r = 0 (Present CHTC case)

Fig. 6. Variation of v(x,1) with x for k = 0 [20], m = 0, n = 0 and r = 0.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

η2

θ 2
r = 0
r = 0.5
r = 4.5
r = 9.5
r = 49.5
r = 99.5

Fig. 8. Plots of h2 for various values of r (VHTC case).

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

η1

θ 1

n = - 0.999
n = - 0.99
n = - 0.9

Fig. 7. Plots of h1 for values of n near �1 (VHF case).

3250 V. Kumaran, I. Pop / International Journal of Heat and Mass Transfer 49 (2006) 3240–3252
fluid (present study) for constant wall temperature case. It
is observed that the dimensionless wall heat flux and the
dimensionless velocity component normal to the plate,
towards the plate at the free stream (�v(x,1)) are smaller
for non-Boussinesq fluid when compared to Boussinesq
fluid for all x values.

The results for VHF and VHTC cases of the present
study are summarized in Table 7. From the Figs. 7 and
8, it is seen that h1 and h2 (dimensionless temperature at
x = 1 for VHF and VHTC cases, respectively) always
attain maximum at the plate itself. From Fig. 9 it is
observed that the dimensionless stream function profiles
f2 when x = 1 for VHTC case are always convex near the
plate.

Fig. 10 shows the variation of dimensionless wall tem-
perature Tw2(x) with x for VHTC case. It is observed that
when r = �0.5, Tw2 is constant for all x and Tw2 increases
Table 7
Comparison of results for VHF case and VHTC case

Non-Boussinesq fluid (present study for VHF case) Non-Boussinesq fluid (present study for VHTC case)

qw1(x) = xn hw2(x) = xr

Tw1(x) = x(2n+1)/4h1(0), w1(x,1) = x(2n+3)/4f1(1) Tw2(x) = x(2r+1)/2h2(0), w2(x,1) = x(r+1)f2(1)

Analytical solution for n ¼ 1
2 Analytical solution for r = 0

No multiple solutions No multiple solutions

No solutions for n 6 �1 No solutions for r 6 � 3
4

Series solutions for n = �1 + 2e, e > 0 Series solutions for r = �0.75 + e, e > 0
A1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peð1� 6:5797363eÞ

p
A2 � pe(1 � 6.5797363e)

f1(1) � (2 � 9.8696044e + 77.8930842e2)/A1 f2(1) � (2 � 9.8696044e + 77.8930842e2)/A2

h1(0) � 1/A1 h2(0) � 1/A2

Series solutions for n = �0.5 + 2e, e! 0 Series solutions for r = �0.5 + e, e! 0
A1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:376526þ 0:922721e� 0:982136e2
p

A2 � 0.376526 + 0.922721e � 0.982136e2

f1(1) � (1.090320 � 1.509365e + 3.167386e2)/A1 f2(1) � (1.090320 � 1.509365e + 3.167386e2)/A2

h1(0) � 1/A1 h2(0) � 1/A2

Asymptotic solutions for n!1 Asymptotic solutions for r!1
h1(0) � 1.286572n�1/4, f1(1) � 1.197511n�3/4 h2(0) � 1.170452r�1/2, f2(1) � 0.770342r�1
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with increasing x for r > �0.5 whereas Tw2 decreases with
increasing x for r < �0.5.

Variation of dimensionless wall temperatures (Tw0(x) =
1,Tw1(x),Tw2(x)) and dimensionless free stream velocity
component normal to the plate (v(x,1)) with x for con-
stant WT, constant HF, and constant HTC cases are
shown in Figs. 5 and 6. Noting that in the case of
CWT, Tw0(x) = 1 for all x, it is seen that in the case of
CHTC, v(x,1) = �1 for all x. It is observed that when
x < 0.782758, Tw1(x) for CHF case is greater than Tw2(x)
for CHTC case whereas when x > 0.782758, Tw1(x) for
CHF case is smaller than Tw2(x) for CHTC case. Also,

�vðx;1ÞjCWT < �vðx;1ÞjCHF < �vðx;1ÞjCHTC

when x > 0.490294.
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Appendix A

Solution of Eqs. (13),(14) and (15b,c) when m = �1/2.
When m = �1/2, let f0(0) = a, where a is an arbitrary

constant. Now Eqs. (13), (14) and (15b,c), give f 00 and h0

which are independent of a. Multiplying Eq. (14) by h00
and integrating from g to1, we get ðh00Þ

2 þ 1
4
h4

0 ¼ 0, which
gives h0(g) � 0. This is in contradiction with Eq. (15b). In
the above derivation we assumed h00ð1Þ ¼ 0, which follows
from the general boundary condition (10b). Hence we
conclude there is no physically realistic solution when
m = �1/2.
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